Download this notebook here.

Get the data

This is a simple guide on how to download the data using this API. You can also find the reference for the API here.

Import the fetcher as follows:

[1]:
import ibc_api.utils as ibc
[siibra:INFO] Version: 0.4a47
[siibra:WARNING] This is a development release. Use at your own risk.
[siibra:INFO] Please file bugs and issues at https://github.com/FZJ-INM1-BDA/siibra-python.
[siibra:INFO] Clearing siibra cache at /home/himanshu/.cache/siibra.retrieval

To see what is available for a given data type on IBC, we need fetch the file that contains that information. The following loads a CSV file with all that info as a pandas dataframe and saves it as ibc_data/available_{data_type}.csv.

Let’s do that for IBC volumetric contrast maps.

[2]:
db = ibc.get_info(data_type="volume_maps")

Let’s see what’s in the database

[3]:
db
[3]:
subject session desc hemi task direction run space suffix datatype extension contrast megabytes dataset path
0 01 00 preproc NaN ArchiSocial ap MNI152NLin2009cAsym NaN NaN .json false_belief-mechanistic 0.000552 volume_maps sub-01/ses-00/sub-01_ses-00_task-ArchiSocial_d...
1 01 00 preproc NaN ArchiSocial ap MNI152NLin2009cAsym NaN NaN .nii.gz false_belief-mechanistic 2.896178 volume_maps sub-01/ses-00/sub-01_ses-00_task-ArchiSocial_d...
2 01 00 preproc NaN ArchiSocial ap MNI152NLin2009cAsym audio NaN .json false_belief-mechanistic_audio 0.000543 volume_maps sub-01/ses-00/sub-01_ses-00_task-ArchiSocial_d...
3 01 00 preproc NaN ArchiSocial ap MNI152NLin2009cAsym audio NaN .nii.gz false_belief-mechanistic_audio 2.893414 volume_maps sub-01/ses-00/sub-01_ses-00_task-ArchiSocial_d...
4 01 00 preproc NaN ArchiSocial ap MNI152NLin2009cAsym video NaN .json false_belief-mechanistic_video 0.000543 volume_maps sub-01/ses-00/sub-01_ses-00_task-ArchiSocial_d...
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
53219 15 40 preproc NaN Scene ffx MNI152NLin2009cAsym correct NaN .json scene_correct-dot_correct 0.000570 volume_maps sub-15/ses-40/sub-15_ses-40_task-Scene_dir-ffx...
53220 15 40 preproc NaN Scene ffx MNI152NLin2009cAsym correct NaN .json scene_impossible_correct 0.000618 volume_maps sub-15/ses-40/sub-15_ses-40_task-Scene_dir-ffx...
53221 15 40 preproc NaN Scene ffx MNI152NLin2009cAsym incorrect NaN .json scene_impossible_incorrect 0.000614 volume_maps sub-15/ses-40/sub-15_ses-40_task-Scene_dir-ffx...
53222 15 40 preproc NaN Scene ffx MNI152NLin2009cAsym correct NaN .json scene_possible_correct-scene_impossible_correct 0.000598 volume_maps sub-15/ses-40/sub-15_ses-40_task-Scene_dir-ffx...
53223 15 40 preproc NaN Scene ffx MNI152NLin2009cAsym correct NaN .json scene_possible_correct 0.000597 volume_maps sub-15/ses-40/sub-15_ses-40_task-Scene_dir-ffx...

53224 rows × 15 columns

There are over 26000 statistic maps (half of the rows because there are .json files corresponding to each map) available for download. But since it’s a pandas dataframe, we can filter it to get just what we want. Let’s see how many statistic maps are available for each task.

[4]:
db["task"].value_counts()
[4]:
task
Audio                  5852
MathLanguage           5760
ArchiStandard          3588
RSVPLanguage           3458
MTTNS                  1824
MTTWE                  1824
Audi                   1800
SpatialNavigation      1728
ArchiSocial            1404
Self                   1320
Visu                   1152
BiologicalMotion2      1100
VSTMC                  1100
BiologicalMotion1      1100
HcpWm                  1092
ArchiSpatial           1092
ArchiEmotional         1092
FaceBody                945
RewProc                 918
HcpMotor                858
MVEB                    792
DotPatterns             726
NARPS                   720
Scene                   693
Attention               660
EmoReco                 660
WardAndAllport          660
TwoByTwo                660
MCSE                    648
Moto                    648
SelectiveStopSignal     528
StopNogo                462
Lec1                    432
MVIS                    432
EmoMem                  396
VSTM                    360
FingerTapping           330
HcpEmotion              312
HcpGambling             312
HcpLanguage             312
HcpRelational           234
HcpSocial               234
PreferenceFaces         222
EmotionalPain           216
Enumeration             216
PreferenceHouses        216
PainMovie               216
Lec2                    216
TheoryOfMind            216
PreferenceFood          216
PreferencePaintings     210
Stroop                  198
Catell                  198
StopSignal              198
ColumbiaCards           192
Bang                    144
Discount                132
Name: count, dtype: int64

You can find the descriptions of all these tasks here.

For this example, let’s just download the maps from Discount task, only for sub-08. You can filter the maps for tasks and subjects like this.

[5]:
filtered_db = ibc.filter_data(db, task_list=["Discount"], subject_list=["08"])
filtered_db
Found 12 files for subjects ['08'] and tasks ['Discount'].
[5]:
subject session desc hemi task direction run space suffix datatype extension contrast megabytes dataset path
25624 08 27 preproc NaN Discount ap MNI152NLin2009cAsym NaN NaN .json amount 0.000503 volume_maps sub-08/ses-27/sub-08_ses-27_task-Discount_dir-...
25625 08 27 preproc NaN Discount ap MNI152NLin2009cAsym NaN NaN .nii.gz amount 2.921305 volume_maps sub-08/ses-27/sub-08_ses-27_task-Discount_dir-...
25626 08 27 preproc NaN Discount ap MNI152NLin2009cAsym NaN NaN .json delay 0.000505 volume_maps sub-08/ses-27/sub-08_ses-27_task-Discount_dir-...
25627 08 27 preproc NaN Discount ap MNI152NLin2009cAsym NaN NaN .nii.gz delay 2.923846 volume_maps sub-08/ses-27/sub-08_ses-27_task-Discount_dir-...
25628 08 27 preproc NaN Discount ffx MNI152NLin2009cAsym NaN NaN .json amount 0.000504 volume_maps sub-08/ses-27/sub-08_ses-27_task-Discount_dir-...
25629 08 27 preproc NaN Discount ffx MNI152NLin2009cAsym NaN NaN .nii.gz amount 2.925251 volume_maps sub-08/ses-27/sub-08_ses-27_task-Discount_dir-...
25630 08 27 preproc NaN Discount ffx MNI152NLin2009cAsym NaN NaN .json delay 0.000506 volume_maps sub-08/ses-27/sub-08_ses-27_task-Discount_dir-...
25631 08 27 preproc NaN Discount ffx MNI152NLin2009cAsym NaN NaN .nii.gz delay 2.925747 volume_maps sub-08/ses-27/sub-08_ses-27_task-Discount_dir-...
25632 08 27 preproc NaN Discount pa MNI152NLin2009cAsym NaN NaN .json amount 0.000503 volume_maps sub-08/ses-27/sub-08_ses-27_task-Discount_dir-...
25633 08 27 preproc NaN Discount pa MNI152NLin2009cAsym NaN NaN .nii.gz amount 2.921803 volume_maps sub-08/ses-27/sub-08_ses-27_task-Discount_dir-...
25634 08 27 preproc NaN Discount pa MNI152NLin2009cAsym NaN NaN .json delay 0.000505 volume_maps sub-08/ses-27/sub-08_ses-27_task-Discount_dir-...
25635 08 27 preproc NaN Discount pa MNI152NLin2009cAsym NaN NaN .nii.gz delay 2.920833 volume_maps sub-08/ses-27/sub-08_ses-27_task-Discount_dir-...

Now we are ready to download the few selected maps that we filtered.

The following will save the requested maps under ibc_data/resulting_smooth_maps/sub-08/task-Discount (or whatever subject you chose). And will also create a local CSV file ibc_data/downloaded_volume_maps.csv to track the downloaded files. This will contain local file paths and the time they were downloaded at, and is updated everytime you download new files.

[9]:
downloaded_db = ibc.download_data(filtered_db)
downloaded_db
Found 12 files to download.
***
To continue, please go to https://iam.ebrains.eu/auth/realms/hbp/device?user_code=UFKZ-XXQU
***
[siibra:INFO] 139625 objects found for dataset ad04f919-7dcc-48d9-864a-d7b62af3d49d returned.
ebrains token successfuly set.

Overall Progress:   0%|                                                                                                                                                                                                                                                                       | 0/12 [00:00<?, ?it/s]
Overall Progress:  17%|██████████████████████████████████████████▌                                                                                                                                                                                                                    | 2/12 [00:00<00:00, 12.46it/s]
Overall Progress:  33%|█████████████████████████████████████████████████████████████████████████████████████                                                                                                                                                                          | 4/12 [00:00<00:00, 12.26it/s]
Overall Progress:  50%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▌                                                                                                                               | 6/12 [00:00<00:00, 11.73it/s]
Overall Progress:  67%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████                                                                                     | 8/12 [00:00<00:00, 11.80it/s]
Overall Progress:  83%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▋                                          | 10/12 [00:00<00:00, 11.94it/s]
Overall Progress: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 12/12 [00:01<00:00, 11.97it/s]
Downloaded requested files from IBC volume_maps dataset. See ibc_data/downloaded_volume_maps.csv for details.
[9]:
local_path downloaded_on
0 ibc_data/volume_maps/sub-08/ses-27/sub-08_ses-... 2023-10-05 17:23:53.472528
1 ibc_data/volume_maps/sub-08/ses-27/sub-08_ses-... 2023-10-05 17:23:53.628380
2 ibc_data/volume_maps/sub-08/ses-27/sub-08_ses-... 2023-10-05 17:23:53.634523
3 ibc_data/volume_maps/sub-08/ses-27/sub-08_ses-... 2023-10-05 17:23:53.793226
4 ibc_data/volume_maps/sub-08/ses-27/sub-08_ses-... 2023-10-05 17:23:53.799418
5 ibc_data/volume_maps/sub-08/ses-27/sub-08_ses-... 2023-10-05 17:23:53.972341
6 ibc_data/volume_maps/sub-08/ses-27/sub-08_ses-... 2023-10-05 17:23:53.979429
7 ibc_data/volume_maps/sub-08/ses-27/sub-08_ses-... 2023-10-05 17:23:54.140314
8 ibc_data/volume_maps/sub-08/ses-27/sub-08_ses-... 2023-10-05 17:23:54.146809
9 ibc_data/volume_maps/sub-08/ses-27/sub-08_ses-... 2023-10-05 17:23:54.304385
10 ibc_data/volume_maps/sub-08/ses-27/sub-08_ses-... 2023-10-05 17:23:54.310566
11 ibc_data/volume_maps/sub-08/ses-27/sub-08_ses-... 2023-10-05 17:23:54.468429

Let’s try plotting one of these contrast maps

[10]:
from nilearn.plotting import plot_stat_map

map_path = downloaded_db["local_path"][1]
plot_stat_map(map_path)
[10]:
<nilearn.plotting.displays._slicers.OrthoSlicer at 0x7f7bdd436bb0>
_images/get_data_15_1.png
[ ]: